A Macroeconomic Perspective on Taxing Multinational Enterprises

Sebastian Dyrda

Guangbin Hong

Joseph B. Steinberg

University of Toronto

Federal Reserve Bank of St. Louis

November 3, 2022

Motivation

MNEs shift large portions of their profits to tax havens, reducing tax revenues in their home countries by hundreds of billions of dollars each year

- Tørsløv et al. (2022): 36% of MNEs profits shifted to tax havens
- OECD: **\$240 bn. (10%)** of global corporate tax revenues lost annually

Motivation

MNEs shift large portions of their profits to tax havens, reducing tax revenues in their home countries by hundreds of billions of dollars each year

- Tørsløv et al. (2022): 36% of MNEs profits shifted to tax havens
- OECD: **\$240 bn. (10%)** of global corporate tax revenues lost annually

In October 2021, 190 countries representing **90% of global GDP** signed onto historic policy framework designed by OECD/G20 to address profit shifting

- Pillar 1: Sales-based allocation of profit taxation rights
- Pillar 2: Global minimum corporate income tax at 15%

Motivation

MNEs shift large portions of their profits to tax havens, reducing tax revenues in their home countries by hundreds of billions of dollars each year

- Tørsløv et al. (2022): 36% of MNEs profits shifted to tax havens
- OECD: **\$240 bn. (10%)** of global corporate tax revenues lost annually

In October 2021, 190 countries representing **90% of global GDP** signed onto historic policy framework designed by OECD/G20 to address profit shifting

- Pillar 1: Sales-based allocation of profit taxation rights
- Pillar 2: Global minimum corporate income tax at 15%

This paper:

- How does profit shifting affect MNEs' production decisions at the micro level?
- What are the aggregate consequences of these micro effects?
- How will the OECD/G20 framework affect the global economy?

What we do

- 1. Develop theory of profit shifting and intangible investment
- 2. Embed theory in multi-country general equilibrium model with heterogeneous firms
- 3. Calibrate to data on profit shifting under current international tax regime
- 4. Counterfactual analysis: shutting down profit shifting, OECD/G20 proposal

What we do

- 1. Develop theory of profit shifting and intangible investment
- 2. Embed theory in multi-country general equilibrium model with heterogeneous firms
- 3. Calibrate to data on profit shifting under current international tax regime
- 4. Counterfactual analysis: shutting down profit shifting, OECD/G20 proposal

What we find

- 1. At the MNE level, profit shifting increases intangible investment, leading to higher output and greater profits
- 2. In equilibrium, profit shifting by MNEs from high-tax countries increases output everywhere these MNEs operate
- 3. The OECD/G20 plan will largely eliminate profit shifting, but this will come at a substantial macroeconomic cost $% A^{2}$

Our theory of profit shifting in brief

"95 percent of Apple's R&D... is conducted in the United States... [During] 2009 to 2012, ASI [Apple Ireland] paid... \$5 billion to [Apple USA] as its share of the R&D costs. Over that same time period, ASI received profits of \$74 billion. The difference between ASI's costs and the profits, almost \$70 billion, is how much taxable income [should] have flowed to the United States." — U.S. Senator Carl Levin, May 21, 2013

- MNEs shift profits by transferring **nonrival** IP to tax-haven affiliates
- Tax-haven affiliates charge parent (and other affiliates) licensing fees to use IP
- Transfer occurs at below market-value price, violating **arm's length principle**
- Empirical evidence
 - Delis et al. (2021): R&D-intensive firms shift profits
 - Accoto et al. (2021): Firms that shift profits import IP services
- End result: raise after-tax return on intangible investment.

Preview of the OECD/G20 plan's consequences

- 1. Profit shifting: Guvenen et al. (2022), Tørsløv et al. (2022), Delis et al. (2021), Accoto et al. (2021)
 - $\rightarrow\,$ Model profit shifting's real effects
- 2. Macroeconomics of intangible capital: Corrado et al. (2009), McGrattan and Prescott (2010), O'Mahony et al. (2018), Koh et al. (2020) and Peters and Taylor (2017) Ewens et al. (2019)
 - \rightarrow Model transfer pricing and profit shifting of intangible income
- 3. Macro public finance: Harberger (1962), Auerbach (1983), Barro and Furman (2018), Kaymak and Schott (2018), Bhandari and McGrattan (2020)
 - $\rightarrow\,$ Aggregate implications of profit shifting for corporate tax reform
- 4. MNEs: Helpman et al. (2004), Antrás and Yeaple (2014), Garetto et al. (2019), McGrattan and Waddle (2020)
 - \rightarrow Model where heterogeneous firms decide intangible investment, profit shifting, and foreign affiliate locations simultaneously

- 1. Theory of profit shifting and intangible investment
- 2. Quantitative model
- 3. Taking the model to the data
- 4. Inspecting the economic mechanism
- 5. The effects of OECD/G20 plan $\,$

THEORY OF PROFIT SHIFTING AND INTANGIBLES

Environment

- MNE with its parent division in i operates in K locations.
- Location $k \in \{1, \dots, K\}$:
 - Population: N_k
 - Productivity: A_k
 - Corporate profit tax rate: au_k
 - Prices: p_k , w_k
- Technology:

$$F(z, l_k) = A_k (N_k \mathbf{z})^{\phi} l_k^{\gamma}$$

- \mathbf{z} is **non-rival**, intangible capital
- l_k is labor input
- DRS: $(\gamma + \phi) < 1$

Accounting profits

Free Transfer (FT): *z* transferred at no cost across locations:

$$\pi_{i} = p_{i} \left(A_{i} \left(N_{i} z \right)^{\phi} l_{i}^{\gamma} \right) - w_{i} l_{i} - \frac{p_{i} z}{p_{k}}$$
$$\pi_{k} = p_{k} \left(A_{k} \left(N_{k} z \right)^{\phi} l_{k}^{\gamma} \right) - w_{k} l_{k}, \quad \forall k \neq i$$

Free Transfer (FT): *z* transferred at no cost across locations:

$$\pi_{i} = p_{i} \left(A_{i} \left(N_{i} z \right)^{\phi} l_{i}^{\gamma} \right) - w_{i} l_{i} - p_{i} z$$
$$\pi_{k} = p_{k} \left(A_{k} \left(N_{k} z \right)^{\phi} l_{k}^{\gamma} \right) - w_{k} l_{k}, \quad \forall k \neq i$$

Transfer pricing (TP): parent division retains legal ownership of z and licenses the rights to use it to its foreign affiliates.

$$\pi_i^{TP} = \pi_i + \sum_{k \neq i} q_k z$$

 $\pi_k^{TP} = \pi_k - q_k z \quad \forall k \neq i$

where

$$\boldsymbol{q_k} \equiv \underbrace{\phi p_k N_k \left(A_k \left(N_k z \right)^{\phi - 1} \boldsymbol{l}_k^{\prime} \right)}_{\boldsymbol{q_k}}$$

Marginal revenue product of \boldsymbol{z}

Profit Shifting (PS):

$$\begin{aligned} \pi_i^{PS} &= \pi_i + z \left[\varphi \lambda \sum_k q_k - \lambda q_i + (1 - \lambda) \sum_{k \neq i} q_k - \mathcal{C} \left(\lambda \right) \sum_k q_k \right] \\ \pi_{i^*}^{PS} &= \pi_{i^*} + z \left[\lambda \sum_{k \neq i^*} q_k - (1 - \lambda) q_{i^*} - \varphi \lambda \sum_k q_k \right] \\ \pi_k^{PS} &= \pi_k - q_k z \quad \forall k \neq i, i^* \end{aligned}$$

where

- $\lambda \in [0, 1]$ a fraction of intangible capital z transferred to the tax haven
- $\mathcal{C}(\lambda)$ is the cost of shifting the fraction λ
- $\varphi \leq 1$ is a markdown below the competitive price of z
- i^* is the tax haven, i.e., $\tau_{i^*} = \min \{\tau_1, ..., \tau_K\}$

Profit maximization

MNE's problem: choose z, $\{l_k\}_{k=1}^K$, and λ to maximize after-tax global profits:

$$\Pi^j \equiv \max_{z, \{l_k\}_{k=1}^K, \lambda} \sum_{k=1}^K (1 - \tau_k) \pi_k^j$$

- $j \in \{FT, TP, PS\}$ denotes the scenario
- z^{FT} , z^{TP} , z^{PS} denote optimal choices of z in each scenario
- MNE only chooses λ in for scenario j = PS

Optimal profit shifting

Assumption

Let $C(\lambda) \equiv \lambda - (1 - \lambda) \log(1 - \lambda)$, implying $C'(\lambda) = -\log(1 - \lambda)$, C(0) = 0, C(1) = 1, and $\lambda \in [0, 1]$.

The share of shifted intangible capital:

$$\lambda = 1 - \exp\left(-\frac{(1-\varphi)(\tau_i - \tau_{i^*})}{1-\tau_i}\right)$$

Lemma

The share of shifted intangible capital λ is:

1. Decreasing in φ .

2. Decreasing in τ_{i^*} with elasticity given by

$$arepsilon_{ au_{i^*}}^\lambda = -rac{1-\lambda}{\lambda}\left(rac{1-arphi}{1- au_i}
ight) au_{i^*}$$

Profit shifting and optimal intangible investment

Proposition

1. If
$$\tau_i = \max\{\tau_k\}_{k=1}^K$$
 then $z^{TP} < z^{FT}$.
2. $z^{PS} > z^{TP} \iff \varphi < 1$ and $z^{PS} = z^{TP} \iff \varphi = 1$.
3. z^{PS} is decreasing in φ .
4. z^{PS} is decreasing in τ_{i^*} .

We show

$$z^{TP} = \left(\frac{\sum_{k=1}^{K} \phi \Lambda_k}{p_i}\right)^{\frac{1-\gamma}{1-\phi-\gamma}} < \left(\frac{\sum_{k=1}^{K} (1-\tau_k) \phi \Lambda_k}{(1-\tau_i)p_i}\right)^{\frac{1-\gamma}{1-\phi-\gamma}} = z^{FT}$$

where Λ_k is a function of A_k , p_k , N_k , w_k . Then z^{PS} is

$$z^{PS} = z^{TP} \underbrace{\left((1 - \mathcal{C}(\lambda)) + \frac{\lambda(1 - \varphi)(\tau_i - \tau_{i^*})}{(1 - \tau_i)} \right)^{\frac{1 - \gamma}{1 - \phi - \gamma}}}_{>1}$$

Profit shifting and optimal intangible investment

Proposition

1. If
$$\tau_i = \max\{\tau_k\}_{k=1}^K$$
 then $z^{TP} < z^{FT}$.
2. $z^{PS} > z^{TP} \iff \varphi < 1$ and $z^{PS} = z^{TP} \iff \varphi = 1$.
3. z^{PS} is decreasing in φ .
4. z^{PS} is decreasing in τ_{i^*} .

with the following elasticities:

$$arepsilon^{z^{TP}}_{ au_{i^*}}=0$$

and

$$\varepsilon_{\tau_{i^*}}^{z^{PS}} = \frac{1-\gamma}{1-\phi+\gamma} \bigg(\frac{-\tau_{i^*}}{\tau_i-\tau_{i^*}}\bigg) \frac{1}{\left[1+\frac{1-\mathcal{C}(\lambda)}{\mathcal{C}'(\lambda)}\right]} < \mathbf{0}$$

Effects of OECD/G20 pillar 1 (sales-based profit allocation)

The MNE's tax base in jurisdiction k as:

where:

- $\pi_k^r = \mu p_k y_k$
- $\pi^R_k = \pi^{PS}_k \pi^r_k$
- $\Pi^R = \sum_k \pi^R_k$

with two policy parameters:

- μ is the routine profit margin
- $\pmb{\theta}$ is the fraction of global residual profits reallocated according to sales shares

Effects of OECD/G20 pillar 1 (sales-based profit allocation)

Proposition

- 1. $\hat{\lambda} < \lambda$ and $\hat{z}^{PS} < z^{PS}$.
- 2. $\hat{\lambda}$ and \hat{z}^{PS} are decreasing in θ .

3. The economy is less responsive to changes in τ_{i^*} :

$$\left|arepsilon_{ au_{i^{st}}}^{\hat{z}^{PS}}
ight|<\left|arepsilon_{ au_{i^{st}}}^{z^{PS}}
ight|$$

$$\lambda = 1 - \exp\left(-\frac{(1-\varphi)(\tau_i - \tau_{i^*})}{1-\tau_i}\right)$$

Proposition

- 1. $\hat{\lambda} < \lambda$ and $\hat{z}^{PS} < z^{PS}$.
- 2. $\hat{\lambda}$ and \hat{z}^{PS} are decreasing in θ .

3. The economy is less responsive to changes in τ_{i^*} :

$$\left|arepsilon_{ au_{i^{st}}}^{\hat{z}^{PS}}
ight|<\left|arepsilon_{ au_{i^{st}}}^{z^{PS}}
ight|$$

$$\hat{\lambda} = 1 - \exp\left(-rac{\left(1-arphi
ight)\left(1-oldsymbol{ heta}
ight)\left(au_{i}- au_{i^{*}}
ight)}{1-\left(\left(1-oldsymbol{ heta}
ight) au_{i}+oldsymbol{ heta}\widehat{oldsymbol{ heta}}
ight)}
ight).$$

where

$$\widehat{\tau} \equiv \sum_{j} \tau_{j} \cdot \frac{p_{j} y_{j}}{\sum_{k} p_{k} y_{k}}.$$

QUANTITATIVE MODEL

Model environment

- Synthesis of Helpman, Melitz, and Yeaple (2004) and McGrattan and Prescott (2010), plus transfer pricing and profit shifting
- *I* productive regions
 - Representative consumer, gov't, and measure of firms
 - Differ in size, TFP, trade/FDI openness, corporate taxes
- 1 unproductive region ("tax haven")
 - Gov't earns revenue by taxing profits of foreign MNEs' affiliates
- Firms in productive regions:
 - Heterogeneous in productivity, compete monopolistically a là Melitz
 - Choose whether to export and/or establish foreign affiliates
 - Parent division invests in nonrival intangible capital, foreign affiliates pay licensing fees
 - Shift profits to lowest-tax productive region and/or tax haven as in theory

Firm's problem

Each firm ω in region *i* chooses:

- Markets:
 - export destinations J_X , subject to fixed cost κ_i^X .
 - foreign affiliates J_F , subject to fixed cost κ_i^F .
- R&D and employment:
 - intangible capital investment z
 - local factors ℓ_j
- Profit shifting:
 - the share of intangible capital λ to shift

to maximize after-tax global profit:

$$\max_{J_{X},J_{F},z,\lambda,\ell} \left\{ (1-\tau_{i}) \left[\pi_{i}^{PS}(\omega) - \sum_{j \in J_{X}} W_{i}\kappa_{ij}^{X} - \sum_{j \in J_{F}} W_{i}\kappa_{ij}^{F} \right] + \sum_{j \in J_{F}} (1-\tau_{j})\pi_{ij}^{PS}(\omega) \right\}$$

Measuring profit shifting in the model

• Profits shifted out of region *i* by firm ω from region *j*:

$$ilde{\pi}_{ij}(\omega) = \pi^{TP}_{ij}(\omega) - \pi^{PS}_{ij}(\omega)$$

 $-\pi_{ij}^{PS}(\omega)$: profit booked in region *j* by firm ω based in region *i* $-\pi_{ij}^{TP}(\omega)$: the same object for TP scenario

• Total profits shifted out of region *j*:

$$\tilde{\Pi}_j = \sum_{i=1}^I \int_{\Omega_i} \tilde{\pi}_{ij}(\omega) d\omega.$$

- These measures can be defined in GE or PE:
 - PE: Hold fixed all Q's and P's and measure profits if shifting was not allowed
 - GE: Allow firms to re-optimize and re-clear all markets

TAKING THE MODEL TO THE DATA

Calibration

Aggregate countries into 5 regions:

- High-tax regions: North America (NA), Europe (EU), Rest of the World (RW)
- Tax havens identified by Tørsløv et al. (2022) split into
 - Low tax (LT): Belgium, Switzerland, Netherlands, Ireland etc.
 - Tax haven (TH): Antigua, Aruba, the Bahamas, Barbados etc.

Calibration

Aggregate countries into 5 regions:

- High-tax regions: North America (NA), Europe (EU), Rest of the World (RW)
- Tax havens identified by Tørsløv et al. (2022) split into
 - Low tax (LT): Belgium, Switzerland, Netherlands, Ireland etc.
 - Tax haven (TH): Antigua, Aruba, the Bahamas, Barbados etc.

Identification of key parameters:

- TFP (A_i) and prod. dispersion (σ_a) : GDP and firm size dist.
- Intangible share (ϕ) : Foreign MNEs' intangible share
- Trade costs (κ^X, ξ) : Num. exporters, trade flows
- FDI costs (κ^{F}, σ): Num. MNEs, foreign MNEs' VA shares
- Corporate tax rates (τ) : data on effective tax rates
- Profit shifting costs (φ_i): Lost profit estimates from Tørsløv et al. (2022)
 - Measured in PE, consistent with empirical methodology
 - Lost profits/GDP: 0.6% for NA, 1.4% for EU, 0.7% for RoW.

Calibration: Region-specific target moments

Region	North America	Europe	Low-tax	RoW	Tax haven
Population (NA $= 100$)	100	92	11	1,323	_
Real GDP (NA = 100)	100	80.78	14.57	297.10	_
Corporate tax rate (%)	22.5	17.3	11.4	17.4	3.3
Foreign MNEs' VA share (%)	11.12	19.82	28.73	9.55	_
Total lost profits (\$B)	143	216	_	257	_
Lost profits to TH $(\%)$	66.4	44.5	_	71.1	_
Imports from (% GDP)					
North America	_	1.28	1.77	1.74	_
Europe	1.70	_	12.39	3.78	_
Low tax	0.35	2.98	_	0.59	_
Row	6.15	7.96	6.78	-	_

Validation

Compare **semi-elasticity** of profit shifting in simulated firm-level data to empirical estimates

$$\log \pi_i^{k,PS}(\omega) = \beta_0 + \beta_\ell \log \ell_i^k(\omega) + \beta_z \log z^k(\omega) - \beta_\tau \hat{\tau}_i^k + \epsilon_i^k(\omega)$$

- $\hat{\tau}_i^k$: tax differential between an MNE's home region and LT or TH.
- β_{τ} : Percentage change in reported profit in response to a one-percentage-point change in the tax differential between the home country and a tax haven
- k: the index of the counterfactual economy

Study	Data source	$eta_{ au}$
Johansson et al. (2017)	ORBIS, 2000-2010	1.11
Heckemeyer and Overesch (2017)	Meta: 27 studies, 203 estimates	0.79
Beer et al. (2020)	Meta: 38 studies, 402 estimates	0.98
This paper	Simulated model data	0.87

QUANTITATIVE EXPERIMENTS

Inspecting the mechanism: intuition (NA only)

Effect of transfer pricing (FT \rightarrow TP)

- Partial equilibrium:
 - Domestic MNEs: after-tax marginal revenue product of $z \downarrow \rightarrow z \downarrow \rightarrow$ output \downarrow
 - Non MNEs: no direct effect
 - Corporate tax base \uparrow/\downarrow
- General equilibrium
 - Reallocation effect: Wages $\downarrow \rightarrow$ non MNE
s $z,\,Y \uparrow$
 - FDI effect: Wages $\downarrow \rightarrow$ for eign MNEs $z,~Y\uparrow$
 - Corporate tax base \uparrow

Effect of profit shifting $(TP \rightarrow PS)$

- Opposite direction for all effects
- Allowing MNEs to shift profits undoes adverse effects of transfer pricing regulations

Region	Lost profits (% GDP)	Corp. tax rev. (% chg.)	Value added (% chg.)	Total	Non MNEs	Domestic MNEs
(a) Effects of tran	nsfer pricing	(no transfer pr	icing vs. no sh	i fting)		
North America	0.00	4.32	-0.16	-0.54	0.58	-1.34
Low tax	0.00	-2.17	-0.25	0.74	-0.75	2.28
(b) Effects of profit	shifting (no s	hifting vs. baseli	ine)			
North America	0.68	-3.82	0.08	0.21	-0.11	0.45
Low tax	-4.37	23.52	-0.04	-0.55	-0.60	-0.49

Tech. capital (% chg.)

Region	Lost profits (% GDP)	Corp. tax rev. (% chg.)	Value added (% chg.)	Total	Non MNEs	Domestic MNEs
(a) Effects of tran	nsfer pricing	(no transfer pr	icing vs. no sh	ifting)		
North America	0.00	4.32	-0.16	-0.54	0.58	-1.34
Low tax	0.00	-2.17	-0.25	0.74	-0.75	2.28
(b) Effects of profit	t shifting (no s	hifting vs. baseli	ine)			
North America	0.68	-3.82	0.08	0.21	-0.11	0.45
Low tax	-4.37	23.52	-0.04	-0.55	-0.60	-0.49

Tech. capital (% chg.)

Inspecting the Mechanism: VA decomposition

		Value added ($\%$ chg.)					
Region	Total	Non MNEs	Domestic MNEs	Foreign MNEs			
(a) Effects of transfe	r pricing (no tr	ansfer pricing	vs. no shifting))			
North America	-0.16	0.36	-0.85	0.35			
Low tax	-0.25	-0.72	1.10	-0.56			
(b) Effects of profit shi	fting (no shifting	vs. baseline)					
North America	0.08	-0.00	0.15	0.15			
Low tax	-0.04	-0.33	-0.29	0.64			
Region	Lost profits (% GDP)	Corp. tax rev. (% chg.)	Value added (% chg.)	Total	Non MNEs	Domestic MNEs	
---------------------	-------------------------	----------------------------	-------------------------	------------	-------------	------------------	
(a) Effects of tran	sfer pricing (no	o transfer pricing	y vs. no shifting	<i>ı</i>)			
North America	0.00	4.32	-0.16	-0.54	0.58	-1.34	
Low tax	0.00	-2.17	-0.25	0.74	-0.75	2.28	
(b) Effects of pro	ofit shifting (n	o shifting vs. be -3.82	aseline) 0.08	0.21	-0.11	0.45	
North America	0.68	-3.82	0.08	0.21	-0.11	0.45	
Low tax	-4.37	23.52	-0.04	-0.55	-0.60	-0.49	

Tech. capital (% chg.)

Region	$\begin{array}{c} \text{Lost profits} \\ (\% \text{ GDP}) \end{array}$	Corp. tax rev. (% chg.)	Value added (% chg.)	Total	Non MNEs	Domestic MNEs
(a) Effects of tran	sfer pricing (no	transfer pricing	vs. no shifting	л)		
North America	0.00	4.32	-0.16	-0.54	0.58	-1.34
Low tax	0.00	-2.17	-0.25	0.74	-0.75	2.28
(b) Effects of pro North America Low tax	ofit shifting (no 0.68 -4.37	o shifting vs. bo -3.82 23.52	useline) 0.08 -0.04	$0.21 \\ -0.55$	-0.11 -0.60	0.45 -0.49

Tech. capital (% chg.)

Inspecting the Mechanism: VA decomposition

		Value added ($\%$ chg.)					
Region	Total	$rac{Non}{MNEs}$	Domestic MNEs	Foreign MNEs			
(a) Effects of transfer p	pricing (no trans	fer pricing vs.	no shifting)				
North America	-0.16	0.36	-0.85	0.35			
Low tax	-0.25	-0.72	1.10	-0.56			
(b) Effects of profit sl	nifting (no shift 0.08	ting vs. baselir -0.03	ne) 0.15	0.15			
Low tax	-0.04	-0.33	-0.29	0.64			

Pillar 1: sales-based profit allocation

- Allocate rights to tax 25% of an MNE's global residual profits based on countries' shares of its global sales.
- Residual profits defined as reported profits above pre-determined share of revenues
- Independent of a physical presence; export destinations without foreign affiliates get a cut

Pillar 2: global minimum corporate income tax at 15%

- If firm based in *i* reports profits in *j* with $\tau_j < \underline{\tau}$, then these profits are taxed in *i* at rate $\underline{\tau} \tau_j$.
- Additional revenue for i is

$$ilde{R}_i = \sum_{j=1}^{I} \int_{\Omega_i} \max\left[\left(\underline{ au} - au_j
ight), 0
ight] \pi_{ij}^{PS}(\omega) \; d\omega$$

				Tech	. capital	(% chg.)
Region	Lost profits $(\text{benchmark} = 1)$	Corp. tax rev. (% chg.)	Value added (% chg.)	Total	Non MNEs	Domestic MNEs
(a) Pillar 1: Profi	t reallocation					
North America	0.60	2.54	-0.13	-0.40	0.15	-0.80
Low tax	0.69	-11.40	-0.13	0.79	0.23	1.35
(b) Pillar 2: Globa	ıl minimum tax rate					
North America	0.37	3.24	-0.06	-0.15	0.08	-0.31
Low tax	0.49	-9.70	0.02	0.32	0.36	0.28
(c) Pillars 1 & 2 t	bogether					
North America	0.23	4.36	-0.17	-0.48	0.17	-0.94
Low tax	0.33	-16.46	-0.13	1.00	0.48	1.51

Notes: For the low-tax region, lost profits are negative in both the benchmark equilibrium and in the policy counterfactuals, i.e., profits are shifted inward to the low-tax region.

				Tech	ı. capital	(% chg.)
Region	Lost profits $(\text{benchmark} = 1)$			Total	Non MNEs	Domestic MNEs
(a) Pillar 1: Profi	t reallocation					
North America	0.60	2.54	-0.13	-0.40	0.15	-0.80
Low tax	0.69	-11.40	-0.13	0.79	0.23	1.35
(b) Pillar 2: Globa	ıl minimum tax rate					
North America	0.37	3.24	-0.06	-0.15	0.08	-0.31
Low tax	0.49	-9.70	0.02	0.32	0.36	0.28
(c) Pillars 1 & 2 t	loge ther					
North America	0.23	4.36	-0.17	-0.48	0.17	-0.94
Low tax	0.33	-16.46	-0.13	1.00	0.48	1.51

Notes: For the low-tax region, lost profits are negative in both the benchmark equilibrium and in the policy counterfactuals, i.e., profits are shifted inward to the low-tax region.

OECD Reform Proposal: VA decomposition

		Value added ($\%$ chg.)					
Region	Total	Non MNEs	Domestic MNEs	Foreign MNEs			
(a) Pillar 1: Profit rea	llocation						
North America	-0.13	-0.01	-0.30	-0.05			
Low tax	-0.13	-0.10	0.36	-0.56			
(b) Pillar 2: Global mi	nimum tax rate						
North America	-0.06	0.01	-0.10	-0.13			
Low tax	0.02	0.23	0.19	-0.46			
(c) Pillars 1 & 2 toget	ner						
North America	-0.17	-0.02	-0.36	-0.11			

				Tech. capital ($\%$ chg.)		
Region	Lost profits $(\text{benchmark} = 1)$	Corp. tax rev. (% chg.)	Value added (% chg.)	Total	Non MNEs	Domestic MNEs
(a) Pillar 1: Pr	ofit reallocation					
North America	0.60	2.54	-0.13	-0.40	0.15	-0.80
Low tax	0.69	-11.40	-0.13	0.79	0.23	1.35
(b) Pillar 2: Gla	obal minimum tax ra	te				
North America	0.37	3.24	-0.06	-0.15	0.08	-0.31
Low tax	0.49	-9.70	0.02	0.32	0.36	0.28
(c) Pillars 1 &	$2 \ together$					
North America	0.23	4.36	-0.17	-0.48	0.17	-0.94
Low tax	0.33	-16.46	-0.13	1.00	0.48	1.51

Notes: For the low-tax region, lost profits are negative in both the benchmark equilibrium and in the policy counterfactuals, i.e., profits are shifted inward to the low-tax region.

				Tech	n. capital	(% chg.)
Region	Lost profits $(\text{benchmark} = 1)$	Corp. tax rev. (% chg.)	Value added (% chg.)	Total	Non MNEs	Domestic MNEs
(a) Pillar 1: Pr	ofit reallocation					
North America	0.60	2.54	-0.13	-0.40	0.15	-0.80
Low tax	0.69	-11.40	-0.13	0.79	0.23	1.35
(b) Pillar 2: Gle	obal minimum tax ra	te				
North America	0.37	3.24	-0.06	-0.15	0.08	-0.31
Low tax	0.49	-9.70	0.02	0.32	0.36	0.28
(c) Pillars 1 &	$2 \ together$					
North America	0.23	4.36	-0.17	-0.48	0.17	-0.94
Low tax	0.33	-16.46	-0.13	1.00	0.48	1.51

Notes: For the low-tax region, lost profits are negative in both the benchmark equilibrium and in the policy counterfactuals, i.e., profits are shifted inward to the low-tax region.

OECD Reform Proposal: VA decomposition

		Value added (% chg.)					
Region	Total	Non MNEs	Domestic MNEs	Foreign MNEs			
(a) Pillar 1: Profit red	allocation						
North America	-0.13	-0.01	-0.30	-0.05			
Low tax	-0.13	-0.10	0.36	-0.56			
(b) Pillar 2: Global m	inimum tax rate						
North America	-0.06	0.01	-0.10	-0.13			
Low tax	0.02	0.23	0.19	-0.46			
(c) Pillars 1 & 2 toge	ther						
North America	-0.17	-0.02	-0.36	-0.11			
Low tax	-0.13	0.07	0.50	-0.98			

OECD/G20 plan: varying the sizes of the pillars (NA only)

Note: X-axis in each plot represents the reallocation share for pillar 1. Y-axis in each plot represents the global minimum corporate income tax rate for pillar 2.

- 1. **Methodology**: We develop a theory in which MNEs can shift profits by transferring IP to tax havens and integrate it into a quantitative GE model
- 2. **Theoretical insight**: profit shifting erodes high-tax countries' tax bases, but also incentivizes their MNEs to invest more heavily in intangible capital
- 3. Quantification: OECD/G20 reform designed to address profit shifting will materially reduce global GDP despite small number of firms targeted
 - Similar magnitude to welfare effects of major trade liberalizations
 - U.S. gained 0.06% from NAFTA (Caliendo and Parro, 2014)
 - OECD gained 0.15% from China trade (di Giovanni et al., 2014)

Limitations:

- Static model: corporate tax distortions are purely intratemporal
- Abstract from financial forms of profit shifting (e.g. manipulation of debt and interest payments), some details of OECD reform

Pipeline:

- Dyrda, Hong, and Steinberg (2022a): International tax competition with intangible capital and profit shifting
- Dyrda, Hong, and Steinberg (2022b): Optimal Taxation of Multinational Enterprises: A Cooperative Ramsey Approach

Calibration Overview

Parameter	Description	Value(s)	Target/source
(a) Assigned	d parameters		
Q	EoS between products	5	Standard
N_{j}	Population	Varies	World Development Indicators
$ au_j^{ m s}$	Corporate income tax rate	Varies	Tørsløv, Wier, and Zucman (2022)
(b) Calibrat	ed parameters		
ϕ	Technology capital share	0.11	MNEs' intangible income share
A_i	Total factor productivity	Varies	Real GDP
η_i	Productivity dispersion	Varies	Large firms' employment share
ψ_i	Utility weight on leisure	Varies	$L_i = N_i/3$
	Variable export cost	Varies	Bilateral imports/GDP
$\xi_{ij} \ \kappa^X_i$	Fixed export cost	Varies	Pct. of firms that export
σ_i	Variable FDI cost	Varies	Foreign MNEs' share of value added
κ_i^F	Fixed FDI cost	Varies	Avg. emp. of firms w/ foreign affiliates
ψ_{iLT}	Cost of shifting profits to LT	Varies	Total lost profits
ψ_{iTH}	Cost of shifting profits to TH	Varies	Share of profits shifted to TH
κ_i^{TH}	Fixed cost of TH affiliate	Varies	Avg. emp. of firms w/ TH affiliates

Calibration: Region-specific target moments

Region	North America	Europe	Low-tax	RoW	Tax haven
Population (NA $= 100$)	100	92	11	1,323	_
Real GDP (NA = 100)	100	80.78	14.57	297.10	_
Corporate tax rate (%)	22.5	17.3	11.4	17.4	3.3
Foreign MNEs' VA share (%)	11.12	19.82	28.73	9.55	_
Total lost profits (\$B)	143	216	_	257	_
Lost profits to TH $(\%)$	66.4	44.5	_	71.1	_
Imports from ($\%$ GDP)					
North America	_	1.28	1.77	1.74	_
Europe	1.70	_	12.39	3.78	_
Low tax	0.35	2.98	_	0.59	_
Row	6.15	7.96	6.78	_	_

Calibration: Internally-calibrated parameter values

Region	North America	Europe	Low-tax	RoW	Tax haven
TFP (A_i)	1.00	0.89	1.58	0.20	_
Prod. dispersion (η_i)	4.28	4.31	4.83	4.12	_
Utility weight on leisure (ψ_i)	1.06	1.08	1.09	1.06	_
Fixed export cost (κ_i^X)	1.7e-3	3.5e-3	1.0e-3	1.4e-2	_
Variable FDI cost (σ_i)	0.47	0.56	0.52	0.53	_
Fixed FDI cost (κ_i^F)	1.80	1.59	0.46	8.75	_
Cost of shifting profits to LT (ψ_{iLT})	3.40	0.38	_	2.35	_
Cost of shifting profits to TH (ψ_{iTH})	2.25	1.25	_	1.76	_
Fixed FDI cost to TH (κ_i^{TH})	0.09	0.06	_	0.59	_
Variable trade cost from					
North America	_	3.21	3.41	2.07	_
Europe	1.89	_	1.69	1.33	_
Low tax	2.04	1.59	_	1.56	_
RoW	2.26	2.59	3.01	_	_

Consumer's Problem

s.t.

Consumers choose labor supply L and consumption C:

$$U(C_i, L_i) = \max_{C_i, L_i} \left[\log \left(\frac{C_i}{N_i} \right) + \psi \log \left(1 - \frac{L_i}{N_i} \right) \right]$$

$$P_i C_i = W_i L_i + (1 - \tau_i) D_i$$

The final goods producer of region i combines intermediate goods with a CES technology:

$$Q_{j} = \left[\sum_{i=1}^{J} \int_{\Omega_{ji}} q_{ji}(\omega)^{\frac{\varrho-1}{\varrho}} d\omega\right]^{\frac{\varrho}{\varrho-1}}$$

- Ω_{ji} : the set of goods from *i* available in *j*.
- q_{ji} : quantity of inputs
- ϱ : elas. of sub. between varieties

Demand curves:

$$p_{ji}(\omega) = P_i Q_i^{\frac{1}{\varrho}} q_{iji}(\omega)^{-\frac{1}{\varrho}}, \qquad (1)$$

The price index is :

$$P_{j} = \left[\sum_{i=1}^{J} \int_{\Omega_{ji}} p_{ji}(\omega)^{1-\varrho} d\omega\right]^{\frac{1}{1-\varrho}}$$

Technology

Technology of firm ω in region

$$y_j(\omega) = \sigma_{ij} A_j a(\omega) \left(N_j z(\omega) \right)^{\gamma} \ell_j(\omega)^{\phi}.$$
⁽²⁾

where

- σ_{ij} is openness of j to FDI from i
- A_j is TFP in region j
- -a is the firm-specific productivity
- N_j is population in region j
- $-\ z$ is firm's intangible capital
- ℓ_j is labor hired in j
- γ and ϕ are returns to scale parameters

Trade and Foreign Direct Investment

- Firms from region i can serve the domestic market freely.
- Two options for serving foreign markets:
 - Export domestically produced goods. Fixed cost: κ_{ijX}
 - Open a foreign affiliate and produce locally. Fixed cost: κ_{ijF}
- The firm's resource constraints

$$y_i = q_{ii} + \sum_{j \in J_X} \xi_{ij} q_{ij}^X$$
(3)
$$y_j = q_{ij}, \ j \in J_F$$
(4)

where

J_X ⊆ J \ i : set of foreign destinations to which the firm exports
 J_F ⊆ J \ i : set of foreign destinations in which the firm operates a subsidiary

Scale Choice

We use non-exporting foreign affiliate as an example.

Given z, an affiliate of firm $\omega \in \Omega_i$ in region j chooses labor input l to maximize profit:

$$\pi_{ij}^{F}(a, z) = \max_{q, \ell} p_{ij}(q) q - W_{i}\ell$$
$$= \max_{\ell} P_{j} Q_{j}^{\frac{1}{\varrho}} \left(\sigma_{ij}A_{j}a\right)^{\frac{\varrho-1}{\varrho}} \left(N_{j}z\right)^{\gamma\frac{\varrho-1}{\varrho}} \ell^{\phi\frac{\varrho-1}{\varrho}} - W_{j}\ell$$

From the FOC, ℓ can be solved as:

$$\boldsymbol{\ell} = \left\{ \left[\frac{\phi(\varrho-1)}{\varrho} \right]^{\varrho} \left(P_j / W_j \right)^{\varrho} Q_j \left(\sigma_{ij} A_j a \right)^{\varrho-1} \left(N_j z \right)^{\gamma(\varrho-1)} \right\}^{\frac{1}{\varphi+\varrho-\varphi\varrho}}$$

IP Choice

R&D technology: number of workers required to produce 1 unit of intangible capital in country j is B_j

Under free transferability, the optimal choice of z is

$$z = \left\{ \left(\frac{\phi + \varrho - \phi \varrho}{\gamma(\varrho - 1)} \right) \left[\frac{(1 - \tau_i) W_i / A_i}{(1 - \tau_i) \left(\bar{R}_{ii} - \bar{C}_{ii} \right) + \sum_{j \in J_F} (1 - \tau_j) \left(\bar{R}_{ij} - \bar{C}_{ij} \right)} \right] \right\}^{\frac{\phi + \varrho - \phi \varrho}{\gamma \varrho + \phi \varrho - \gamma - \phi - \varrho}}$$

Within the square bracket (the exponent outside is negative):

- The numerator is the marginal cost of producing z.
- The denominator is the marginal benefit.
- Adding transfer pricing and profit shifting will change optimal z through the denominator.

Profit Shifting Choice

From the FOC, optimal λ can be solved as (independent of z):

$$\lambda = \left(\mathcal{C}'\right)^{-1} \left[(1-\varphi) \frac{(\tau_i - \tau_{i^*})}{1-\tau_i} \right]$$

We can see that λ :

- decreases with the discount factor φ .
- decreases with lowest tax rate τ_{i^*} .

Firm's problem: free transfer of z

$$d_i^{FT}(\omega) = \max_{z,\ell,J_X,J_F,q} \left\{ (1-\tau_i) \underbrace{\left[p_{ii}(q_{ii})q_{ii} + \sum_{j\in J_X} \left(p_{ij}^X(q_{ij}^X)q_{ij}^X - W_i\kappa_{ijX} \right) - W_i(\ell_i + z/A_i) - W_i \sum_{J\in J_F} \kappa_{ijF} \right]}_{+ \sum_{j\in J_F} (1-\tau_j) \underbrace{\left[p_{ij}(q_{ij})q_{ij} - W_j\ell_j \right]}_{\text{Foreign subsidiary profits}} \right\}}_{\text{Foreign subsidiary profits}}$$

-

subject to (1), (2), (3), and (4).

Simplify the notation:

$$\pi_{i}^{D}(a, z; J_{X}) = \max_{q_{ii}, \{q_{ij}^{X}\}_{j \in J_{X}}, \ell_{i}} \left\{ p_{ii}(q_{ii})q_{ii} + \sum_{j \in J_{X}} p_{ij}(q_{ij}^{X})q_{ij}^{X} - W_{i}\ell_{i} \right\}$$

s.t $q_{ii} + \sum_{j \in J_{X}} \xi_{ij}q_{ij} = y_{i} = A_{i}a(N_{i}z)^{\gamma}\ell_{i}^{\phi}$

and

(5)

Firm's problem: free transfer of \boldsymbol{z}

Thus, the conglomerate's problem can be written more succinctly as

$$egin{aligned} &d_i^{FT}(\omega) = igg\{(1- au_i)igg[\pi_i^D(a,z;J_X) - W_iigg(z/A_i + \sum_{J\in J_X}\kappa_{ijX} + \sum_{j\in J_F}\kappa_{ijF}igg)igg] \ &+ \sum_{j\in J_F}(1- au_j)\pi_{ij}^F(a,z)igg\} \end{aligned}$$

Firm's Problem: transfer pricing

Building upon $d^{FT}(a)$, the TP version of the problem can be written as

$$\begin{aligned} d_i^{TP}(\omega) &= \max_{z, J_X, J_F} \left\{ (1 - \tau_i) \Big[\pi_i^D(a, z; J_X) - W_i \Big(z/A_i + \sum_{J \in J_X} \kappa_{ijX} + \sum_{j \in J_F} \kappa_{ijF} \Big) + \sum_{j \in J_F} \vartheta_{ij}(z) z \Big] \right. \\ &+ \sum_{j \in J_F} (1 - \tau_j) \Big[\pi_{ij}^F(a, z) - \underbrace{\vartheta_{ij}(z) z}_{\text{Licensing fee}} \Big] \Big\} \end{aligned}$$

Licensing fees

Firm's Problem: profit shifting

$$\begin{split} d_i^{PS}(\omega) &= \max_{z,J_X,J_F,\lambda_{LT},\lambda_{TH}} \left\{ (1-\tau_i) \bigg[\pi_i^D(a,z;J_X) - W_i \bigg(z/A_i + \sum_{J \in J_X} \kappa_{ijX} + \sum_{j \in J_F} \kappa_{ijF} \bigg) \\ &+ \sum_{j \in J_F} \underbrace{\text{Licensing fee receipts}}_{j \in J_F} + \underbrace{\text{Proceeds from selling } z}_{j \in J_F} + \underbrace{\sum_{j \in J_F} (1-\lambda_{LT} - \lambda_{TH}) \vartheta_{ij}(z) z}_{-1} + \underbrace{(\varphi_i \lambda_{LT} + \varphi_i \lambda_{TH}) v_i(z) z}_{-1} + \underbrace{(\varphi_i \lambda_{LT} + \varphi_i \lambda_{TH}) v_i(z) z}_{-1} \bigg] \\ &+ (1-\tau_{LT}) 1_{(LT \in J_F)} \bigg[\pi_{i,LT}^F(a,z) + \underbrace{\sum_{j \in J_F \cup \{i\} \setminus \{LT\}} \lambda_{LT} \vartheta_{ij}(z) z}_{-1} - \underbrace{(\varphi_i \lambda_{LT} v_i(z) z)}_{-1} - \underbrace{(\varphi_i \lambda_{LT} v_i(z) z)}_{-1} \bigg] \\ &+ (1-\tau_{TH}) 1_{(\lambda_{TH} > 0)} \bigg[\sum_{j \in J_F \cup \{i\}} \lambda_{TH} \vartheta_{ij}(z) z - \underbrace{(\varphi_i \lambda_{TH} v_i(z) z)}_{-1} \bigg] \\ &+ \sum_{i \in I \in \mathbb{Z}} (1-\tau_j) \bigg[\pi_{ij}^F(a,z) - \underbrace{\vartheta_{ij}(z) z}_{-1} \bigg] \bigg\} \end{split}$$

49

Accounting Measures

Nominal GDP:

$$GDP_i = \sum_{j=1}^{I} \int_{\omega \in \Omega_j, i \in J_F(\omega)} p_{ji}(\omega) y_{ji}(\omega) \ d\omega.$$

Goods Trade:

$$\begin{split} EX_i^G &= \sum_{j \neq i} \int_{\Omega_i} p_{ij}^X(\omega) \left(1 + \xi_{ij} \right) q_{ij}^X(\omega) \ d\omega, \\ IM_i^G &= \sum_{j \neq i} \int_{\Omega_j} p_{ji}^X(\omega) \left(1 + \xi_{ji} \right) q_{ji}^X(\omega) \ d\omega. \end{split}$$

Services Trade:

– high-tax regions

$$\begin{split} EX_i^S &= \sum_{j \neq i} \int_{\Omega_i} \left[1 - \lambda_{LT}(\omega) - \lambda_{TH}(\omega) \right] \vartheta_{ij}(\omega) z(\omega) \ d\omega \\ IM_i^S &= \sum_{j \neq i} \int_{\Omega_i} \left[\lambda_{LT}(\omega) + \lambda_{TH}(\omega) \right] \vartheta_{ij}(\omega) z(\omega) \ d\omega + \sum_{j \neq i} \int_{\Omega_j} \vartheta_{ji}(\omega) z(\omega) \ d\omega \end{split}$$

– low-tax regions:

$$\begin{split} EX_{LT}^{S} &= \sum_{j \neq i} \int_{\Omega_{i}} \left[1 - \lambda_{TH}(\omega) \right] \vartheta_{ij}(\omega) z(\omega) \ d\omega + \sum_{j \neq i} \int_{\Omega_{j}} \lambda_{LT} \vartheta_{ji}(\omega) z(\omega) \ d\omega \\ IM_{LT}^{S} &= \sum_{j \neq i} \int_{\Omega_{i}} \lambda_{TH}(\omega) \vartheta_{ij}(\omega) z(\omega) \ d\omega + \sum_{j \neq i} \int_{\Omega_{j}} \left[1 - \lambda_{LT}(\omega) \right] \vartheta_{ji}(\omega) z(\omega) \ d\omega \end{split}$$

- tax haven:

$$EX_{TH}^{S} = \sum_{j=1}^{I} \int_{\Omega_{j}} \lambda_{TH} \vartheta_{ji}(\omega) z(\omega) d\omega$$

Accounting Measures

Net factor receipts and payments:

$$NFR_{i} = \sum_{j \neq i} \int_{\Omega_{i}} (1 - \tau_{j}) \pi_{ij}^{PS}(\omega) d\omega$$
$$NFP_{i} = \sum_{j \neq i} \int_{\Omega_{j}} (1 - \tau_{i}) \pi_{ji}^{PS}(\omega) d\omega$$

Market Clearing

Labor market:

$$L_{i} = \underbrace{\sum_{j=1}^{l} \int_{\Omega_{j}} \ell_{ji}(\omega) \, d\omega}_{\text{costs}} + \underbrace{\int_{\Omega_{i}} z(\omega)/A_{i} \, d\omega}_{\text{costs}} + \underbrace{\int_{\Omega_{i}} \left(\sum_{j \in J_{X}(\omega)} \kappa_{i}^{X} + \sum_{j \in J_{F}(\omega)} \kappa_{i}^{F} + \lambda_{TH}(\omega) > 0 \kappa_{i}^{TH} \right) \, d\omega}_{\text{costs of shifting } z}$$

Government Budget Constraint:

$$T_i = au_i \sum_{j=1}^{I} \int_{\Omega_j} \pi_{ji}^{PS}(\omega) \ d\omega_i$$

Balance of Payments:

$$EX_i^G + EX_i^S - IM_i^G - IM_i^S + NFR_i - NFP_i = 0.$$

Region	Wages	Employment			
(a) Effects of transfer pricing					
North America	-0.02	-0.08			
Europe	-0.06	0.05			
Low tax	0.06	-0.04			
Rest of world	-0.03	0.01			
(b) Effects of profit shifting					
North America	0.02	0.10			
Europe	-0.03	0.11			
Low tax	0.18	-0.33			
Rest of world	-0.03	0.06			

Wages and Employment

Region	Wages	Employment			
(c) Pillar 1: Profit reallocation					
North America	-0.03	-0.08			
Europe	-0.01	-0.05			
Low tax	-0.16	0.22			
Rest of world	-0.00	-0.03			

(d) Pillar 2: Gla	bal minim	$um \ tax \ rate$
North America	-0.02	-0.08
Europe	0.03	-0.10
Low tax	-0.07	0.16
Rest of world	0.03	-0.05

(e)	Pillars 1 &	2 together	
No	rth America	-0.04	-0.12
Eu	rope	0.01	-0.11
Lo	w tax	-0.20	0.30
-			