Redevelopment and Gentrification in General Equilibrium

Guangbin Hong James Macek

Michigan State U U of Alberta

Early Career Researchers' Workshop November 14, 2025

• The decline in housing affordability in the U.S. is largely driven by inadequate housing supply (Glaeser and Gyourko, 2018).

- The decline in housing affordability in the U.S. is largely driven by inadequate housing supply (Glaeser and Gyourko, 2018).
- In high-density urban areas, housing supply is often through redevelopment (McMillen and O'Sullivan, 2013; Baum-Snow and Han, 2024).

- The decline in housing affordability in the U.S. is largely driven by inadequate housing supply (Glaeser and Gyourko, 2018).
- In high-density urban areas, housing supply is often through redevelopment (McMillen and O'Sullivan, 2013; Baum-Snow and Han, 2024).
 - replaces old, affordable housing with new, high-quality housing
 - is spatially concentrated and often coincides with gentrification (Munneke and Womack, 2015)
 - can create a "trickle-down" effect at the city-level to improve affordability (Nathanson, 2025)

- The decline in housing affordability in the U.S. is largely driven by inadequate housing supply (Glaeser and Gyourko, 2018).
- In high-density urban areas, housing supply is often through redevelopment (McMillen and O'Sullivan, 2013; Baum-Snow and Han, 2024).
 - replaces old, affordable housing with new, high-quality housing
 - is spatially concentrated and often coincides with gentrification (Munneke and Womack, 2015)
 - can create a "trickle-down" effect at the city-level to improve affordability (Nathanson, 2025)
- Rising interests to restrict redevelopment: e.g. Chicago, SF, Seattle
- However, there is limited understanding of the distributional effects of redevelopment:
 - across heterogeneous households
 - at both the neighborhood and city level
 - in the short-run and long-run

Question: What are the distributional effects of housing redevelopment?

Corollary: What are the effects of policies that restrict housing redevelopment?

Question: What are the distributional effects of housing redevelopment?

Corollary: What are the effects of policies that restrict housing redevelopment?

Empirical Analysis:

• Assess the effect of a three-year teardown tax policy in two nghds in Chicago

Question: What are the distributional effects of housing redevelopment?

Corollary: What are the effects of policies that restrict housing redevelopment?

Empirical Analysis:

• Assess the effect of a three-year teardown tax policy in two nghds in Chicago

Structural Model: build a dynamic spatial GE model:

- Space: neighborhoods with indivisible, heterogeneous housing units, endogenous amenities
- Supply: forward-looking landlords ⇒ endogenous redevelopment + quality depreciation
- Demand: heterogeneous households with different income \Rightarrow assignment + filtering

Question: What are the distributional effects of housing redevelopment?

Corollary: What are the effects of policies that restrict housing redevelopment?

Empirical Analysis:

• Assess the effect of a three-year teardown tax policy in two nghds in Chicago

Structural Model: build a dynamic spatial GE model:

- Space: neighborhoods with indivisible, heterogeneous housing units, endogenous amenities
- Supply: forward-looking landlords ⇒ endogenous redevelopment + quality depreciation
- Demand: heterogeneous households with different income \Rightarrow assignment + filtering

<u>Counterfactual</u>: simulate teardown tax policies with different nghds coverages and length

This Paper: What We Find

Empirical Analysis:

• The temporary teardown tax significantly reduced demolitions yet was too short to improve housing affordability or reduce displacement.

This Paper: What We Find

Empirical Analysis:

• The temporary teardown tax significantly reduced demolitions yet was too short to improve housing affordability or reduce displacement.

Counterfactual: a teardown tax in all below-median-income nghds for 50 years would

- shift redevelopment towards untreated, especially low-income, neighborhoods
- decrease avg. housing rent and income in treated nghds but increase them in untreated nghds
- benefit low-income households but hurt middle- to high- income households across the city

This Paper: What We Find

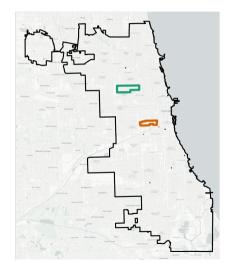
Empirical Analysis:

• The temporary teardown tax significantly reduced demolitions yet was too short to improve housing affordability or reduce displacement.

Counterfactual: a teardown tax in all below-median-income nghds for 50 years would

- shift redevelopment towards untreated, especially low-income, neighborhoods
- decrease avg. housing rent and income in treated nghds but increase them in untreated nghds
- benefit low-income households but hurt middle- to high- income households across the city

Key takeaways:


- 1. Housing quality is an important determinant of household sorting and neighborhood changes.
- 2. Housing policies targeted at specific locations can generate significant spatial spillovers.

Empirical Analysis: The Teardown Tax

Data

- Assessment records and transaction deeds: 2000–2023
 - assessment data record a detailed list of housing characteristics for buildings up to six units
 - transaction data record sales price, date, deed type and parcel identifier
- Building permits: 2006–2023
 - record application date, address, work type, estimated cost and work description
 - use ChatGPT to select permits that involve tearing down or erecting an entire building
- RentHub data: 2014–2024
 - web-scrapped rental listings, records monthly rent, address, unit identifier, and housing characteristics
- Verisk address history data: 2012–2024
 - panel data on individual address history based on private and public records

The Teardown Tax Policy in Chicago

- Policy: teardown tax to obtain a demolition permit:
 - $\tan = \max(\$15,000,\$5,000 \times \text{demolished unit})$
 - emergency teardown and redevelopment into affordable housing are exempt
- Two policy neighborhoods: 606-Trail and Pilsen
 - each ≈ 5,000 units, account for 4% in Chicago
 - rising redevelopment and affordability issues detail
- Period: Mar 2021 Dec 2024
- Goal: to preserve naturally occurring affordable housing (City Council of Chicago, 2021)

Empirical Strategy

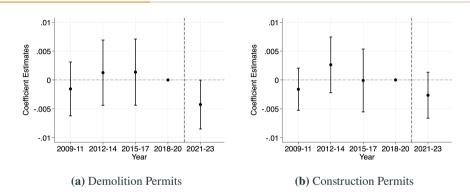
• We employ a spatial DiD design, comparing outcome variables within 500m buffers inside and outside the policy boundaries. • balance

Empirical Strategy

- We employ a spatial DiD design, comparing outcome variables within 500m buffers inside and outside the policy boundaries. balance
- The regressions are specified as follows:

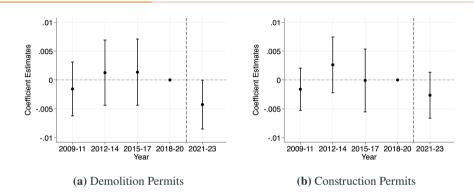
$$Y_{it} = \beta_0 + \sum_{k=-t_0}^{t_1} \beta_k \times 1_{t=k} \times Tr_{it} + \delta_{xt} X_{it} + F_{xt} (LON_i, LAT_i) + \mu_i + \epsilon_{it}$$
 (1)

- $-Y_{it}$: demolition and construction permits, log housing rental and sales prices, and mobility
- Trt_{it} = 1 if unit i is in the treated area and t ≥ 2021
- X_{it} : control variables; μ_i : unit fixed effect
- $-F_{xt}(LON, LAT)$: neighborhood-time specific polynomial of longitude and latitude

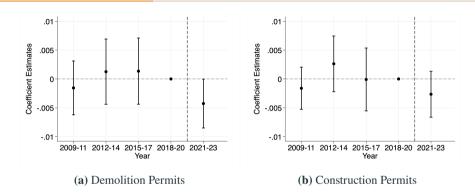

Empirical Strategy

- We employ a spatial DiD design, comparing outcome variables within 500m buffers inside and outside the policy boundaries. balance
- The regressions are specified as follows:

$$Y_{it} = \beta_0 + \sum_{k=-t_0}^{t_1} \beta_k \times 1_{t=k} \times Tr_{it} + \delta_{xt} X_{it} + F_{xt} (LON_i, LAT_i) + \mu_i + \epsilon_{it}$$
 (1)


- $-Y_{it}$: demolition and construction permits, log housing rental and sales prices, and mobility
- Trt_{it} = 1 if unit i is in the treated area and t ≥ 2021
- X_{it} : control variables; μ_i : unit fixed effect
- $-F_{xt}(LON, LAT)$: neighborhood-time specific polynomial of longitude and latitude
- Identification assumption: conditional on the set of control variables, housing demand
 conditions are comparable within the narrow buffers across the boundary absent of the policy.

Main Finding: The Teardown Tax Significantly Reduced Demolition


• The policy significantly decreases demolition permits: demolition rate ↓ more than one half

Main Finding: The Teardown Tax Significantly Reduced Demolition

- The policy significantly decreases demolition permits: demolition rate ↓ more than one half
 - parallel pre-trend indicates similar housing demand conditions across the border
 - spatial spillovers to the control area is likely minimal due to short policy duration avg rate

Main Finding: The Teardown Tax Significantly Reduced Demolition

- The policy significantly decreases demolition permits: demolition rate ↓ more than one half
 - parallel pre-trend indicates similar housing demand conditions across the border
 - spatial spillovers to the control area is likely minimal due to short policy duration avg rate
- Negative yet insignificant effect on construction permits

Other Empirical Results and Robustness

- Other outcomes:
 - housing rent and sales price: negative, insignificant effects detail
 - mobility: negative, insignificant effect detail
 - renovation permits: insignificant effect detail
 - estimated costs of construction permits: insignificant effect detail
 - **permit processing time**: insignificant effect detail
- Robustness check:
 - alternative buffer widths (250m and 1000m) detail
- We also provide causal evidence on the effect of neighborhood-level redevelopment on income sorting detail

A Model of Redevelopment and

Neighborhood Sorting

- Neighborhoods:
 - a city comprised of a set of neighborhoods $x \in \mathbb{X}$, differing in amenity levels $\bar{A}(x,z)$
 - an outside option o that provides exogenous utilities

- Neighborhoods:
 - a city comprised of a set of neighborhoods $x \in \mathbb{X}$, differing in amenity levels $\bar{A}(x,z)$
 - an outside option o that provides exogenous utilities
- Parcels and indivisible housing units:
 - each neighborhood x contains a set of parcels $i \in \mathbb{I}_x$
 - one building on each parcel, differing in the number of units h and quality q
 - housing quality depreciates over time at the rate δ

- Neighborhoods:
 - − a city comprised of a set of neighborhoods $x \in \mathbb{X}$, differing in amenity levels $\bar{A}(x,z)$
 - an outside option o that provides exogenous utilities
- Parcels and indivisible housing units:
 - each neighborhood *x* contains a set of parcels $i \in \mathbb{I}_x$
 - one building on each parcel, differing in the number of units h and quality q
 - housing quality depreciates over time at the rate δ
- Households:
 - differ in income level z ∈ \mathbb{Z} with measure $\bar{L}(z)$

- Neighborhoods:
 - a city comprised of a set of neighborhoods $x \in \mathbb{X}$, differing in amenity levels $\bar{A}(x,z)$
 - an outside option o that provides exogenous utilities
- Parcels and indivisible housing units:
 - each neighborhood x contains a set of parcels $i \in \mathbb{I}_X$
 - one building on each parcel, differing in the number of units h and quality q
 - housing quality depreciates over time at the rate δ
- Households:
 - differ in income level z ∈ \mathbb{Z} with measure $\bar{L}(z)$
- Discrete-time economy. Discount factor β .

• Choice order: neighborhood $x \to \text{housing quality } q$.

- Choice order: neighborhood $x \to \text{housing quality } q$.
- We use the assignment model for the quality choice (Landvoigt, Piazzesi and Schneider, 2015).
- In neighborhood x, the household with income z chooses (q, y) to maximize utility:

$$U_t(x,z) = \max_{q,y} q^{\alpha} y^{1-\alpha}$$
 (2)

subject to

$$P_t(q, x) + y = z \tag{3}$$

- where α is the preference weight on housing, y is the numeraire, final good
- $-P_t(q,x)$ is the rent-quality schedule in neighborhood x

- Choice order: neighborhood $x \to \text{housing quality } q$.
- We use the assignment model for the quality choice (Landvoigt, Piazzesi and Schneider, 2015).
- In neighborhood x, the household with income z chooses (q, y) to maximize utility:

$$U_t(x,z) = \max_{q,y} q^{\alpha} y^{1-\alpha} \tag{4}$$

subject to

$$P_t(q, x) + y = z (5)$$

- in equilibrium, high-income households choose high-quality housing
- implies high-income households prefer nghd with relatively cheaper high-quality housing

- Choice order: neighborhood $x \to \text{housing quality } q$.
- We use the assignment model for the quality choice (Landvoigt, Piazzesi and Schneider, 2015).
- In neighborhood x, the household with income z chooses (q, y) to maximize utility:

$$U_t(x,z) = \max_{q,y} q^{\alpha} y^{1-\alpha} \tag{4}$$

subject to

$$P_t(q, x) + y = z (5)$$

- in equilibrium, high-income households choose high-quality housing
- implies high-income households prefer nghd with relatively cheaper high-quality housing

Proposition

For $Z_2 > Z_1$ and two neighborhoods X_1 and X_2 , we have,

$$\forall q, \quad \frac{\partial \log P(q, x_2)}{\partial \log q} > \frac{\partial \log P(q, x_1)}{\partial \log q} \implies \frac{U(x_1, z_2)}{U(x_1, z_1)} > \frac{U(x_2, z_2)}{U(x_2, z_1)}.$$

Household's Problem: Neighborhood Choice

• Neighborhood choice of household with income *z*:

$$\max_{X} A_t(X, Z) \ U_t(X, Z) \ \xi_t(X) \tag{6}$$

- $-A_t(x,z)$: income-specific neighborhood amenity
- $-\xi_t(x)$: i.i.d. Type-II EVD nghd idiosyncratic preference with shape parameter σ_x

Household's Problem: Neighborhood Choice

• Neighborhood choice of household with income *z*:

$$\max_{X} A_t(x,z) \ U_t(x,z) \ \xi_t(x) \tag{6}$$

- $-A_t(x,z)$: income-specific neighborhood amenity
- $-\xi_t(x)$: i.i.d. Type-II EVD nghd idiosyncratic preference with shape parameter σ_x
- Housing sorting:

$$L_t(x,z) = \bar{L}(z) \cdot \frac{\left[U_t(x,z)A_t(x,z)\right]^{\sigma_x}}{\sum_{x' \in \mathbb{X}} \left[U_t(x',z)A_t(x',z)\right]^{\sigma_x} + \bar{U}(z)^{\sigma_x}},\tag{7}$$

Household's Problem: Neighborhood Choice

• Neighborhood choice of household with income *z*:

$$\max_{x} A_{t}(x,z) U_{t}(x,z) \xi_{t}(x) \tag{6}$$

- $-A_t(x,z)$: income-specific neighborhood amenity
- $-\xi_t(x)$: i.i.d. Type-II EVD nghd idiosyncratic preference with shape parameter σ_x
- Housing sorting:

$$L_t(x,z) = \bar{L}(z) \cdot \frac{\left[U_t(x,z)A_t(x,z)\right]^{\sigma_x}}{\sum_{x' \in \mathbb{X}} \left[U_t(x',z)A_t(x',z)\right]^{\sigma_x} + \bar{U}(z)^{\sigma_x}},\tag{7}$$

• Neighborhood amenity includes an exogenous and an endogenous component:

$$A_t(x,z) = \bar{A}(x,z) \cdot \bar{z}_t(x)^{\eta}$$

Landlord's Problem

• In each period, each landlord with $s_{it} = (q_{it}, h_{it})$ considers whether to redevelop or not.

Landlord's Problem

- In each period, each landlord with $s_{it} = (q_{it}, h_{it})$ considers whether to redevelop or not.
- Draws a one-period building blueprint \hat{q}_{it} from $G(\hat{q})$
 - imperfect arbitrage across quality segments shown in Damen, Korevaar and Van Nieuwerburgh (2025)

Landlord's Problem

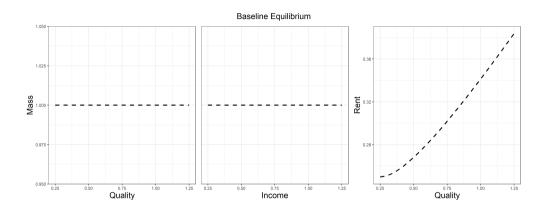
- In each period, each landlord with $s_{it} = (q_{it}, h_{it})$ considers whether to redevelop or not.
- Draws a one-period building blueprint \hat{q}_{it} from $G(\hat{q})$
 - imperfect arbitrage across quality segments shown in Damen, Korevaar and Van Nieuwerburgh (2025)
- Landlord's problem (assumes perfect foresight):

Value of the Existing Structure

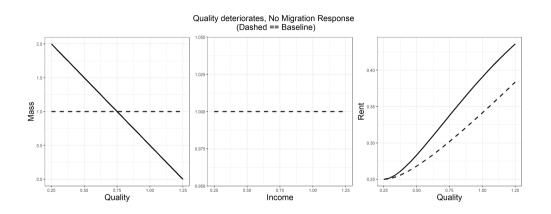
$$V_{it}(s_{it}, \hat{q}_{it}) = \max \left\{ \overbrace{P_{t}(q_{it}, x)h_{it} + \beta \mathbb{E}_{\hat{q}_{it+1}} V_{i,t+1} \left[(1 - \delta)q_{it}, h_{it}, \hat{q}_{i,t+1} \right]}, \\ \max_{h_{i,t+1}} \left\{ -C_{it}(\hat{q}, h_{i,t+1}) + \beta \mathbb{E}_{\hat{q}_{it+1}} V_{i,t+1} \left[\hat{q}_{it}, h_{i,t+1}, \hat{q}_{i,t+1} \right] \right\}$$
(9)

Value of Redevelopment

Landlord's Problem

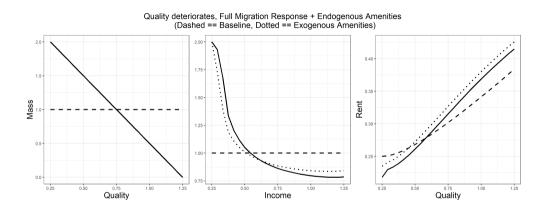

- In each period, each landlord with $s_{it} = (q_{it}, h_{it})$ considers whether to redevelop or not.
- Draws a one-period building blueprint \hat{q}_{it} from $G(\hat{q})$
 - imperfect arbitrage across quality segments shown in Damen, Korevaar and Van Nieuwerburgh (2025)
- Landlord's problem (assumes perfect foresight):

$$V_{it}(s_{it}, \hat{q}_{it}) = \max \left\{ \underbrace{P_{t}(q_{it}, x)h_{it} + \beta \mathbb{E}_{\hat{q}_{it+1}} V_{i,t+1} \left[(1 - \delta)q_{it}, h_{it}, \hat{q}_{i,t+1} \right]}_{h_{i,t+1}}, \\ \max_{h_{i,t+1}} \left\{ -C_{it}(\hat{q}, h_{i,t+1}) + \beta \mathbb{E}_{\hat{q}_{it+1}} V_{i,t+1} \left[\hat{q}_{it}, h_{i,t+1}, \hat{q}_{i,t+1} \right] \right\}$$
(9)


Value of Redevelopment

• Construction cost function:

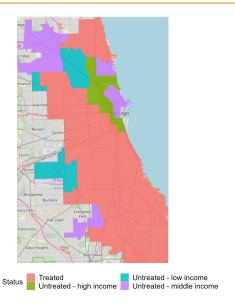

$$C_{it}(\hat{q}, h) = \underbrace{\Omega_{x} \cdot \hat{q} \cdot h^{\gamma}}_{\text{Variable construction costs}} + \underbrace{F_{\hat{q}x}}_{\text{fixed cost incl. teardown tax}} + \underbrace{\sigma_{c}^{-1} \xi_{it}^{R}}_{\text{i.i.d. Type-I EVD cost shock}}$$
(10)


• Start from a baseline eqm where a neighborhood has uniform quality and income dist

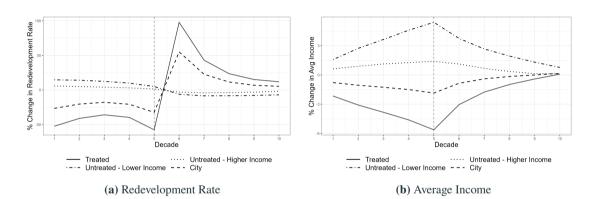
- Exogenously increase low-quality and decrease high-quality housing (teardown tax)
- Without migration, the rent function increases throughout the quality dist and steepens

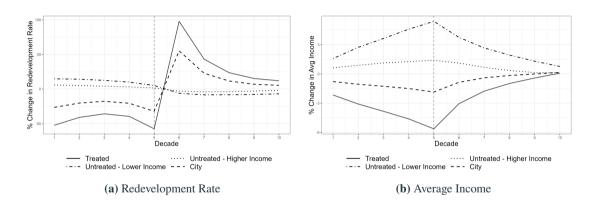
- With migration, high-income hhs move out and low-income hhs move in
- Change in income dist. shifts down the rent fun. ⇒ low-quality housing becomes cheaper

- With migration + endogenous amenity, amenity decreases in the nghd
- The rent function further shifts down, amplifying the effect of the quality shift

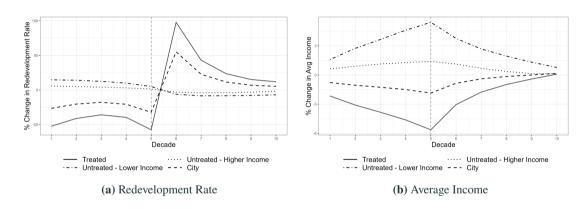

Taking the Model to Data

Taking the Model to Data

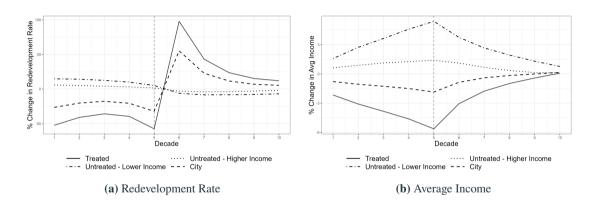

- Housing quality and depreciation rate δ : estimate a log-linear hedonic regression with nghd-specific parameters using merged RentHub and assessment data detail
- Housing supply elasticities:
 - redevelopment elasticity σ_c : match the DiD estimate of the policy effect on demolition detail
 - unit supply elasticity γ : exploit revealed choices of new buildings and housing demand IV deta
- Calibrate remaining parameters to match three sets of empirical moments: detail
 - nghd housing quality distributions (from the hedonic regression)
 - nghd population and income distributions (ACS block-group data)
 - expenditure shares on rent by income decile (ACS microdata)
- Add moving costs and non-homothetic preference to the model


Counterfactual Analysis

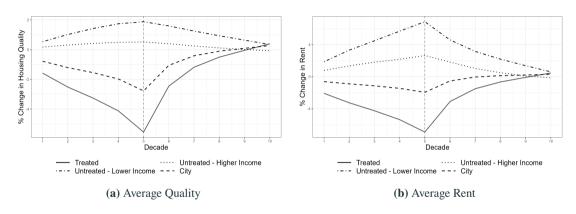
A Teardown Tax on Low-Income Neighborhoods



- Simulate a \$60,000 teardown tax in all below-median-income neighborhoods for 50 years.
- Compare outcomes for the treated neighborhoods and untreated neighborhood by initial income.
- Solve for the whole transition path; set a period to be 10 years.

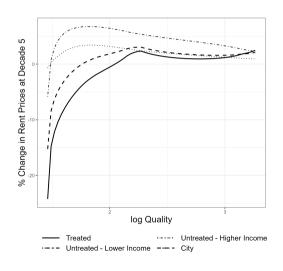


- Redevelopment rate:
 - **treated neighborhoods**: decrease by more than half during the policy, increases after the policy
 - untreated neighborhoods: increases during the policy, decreases after the policy
 - greater increase in the untreated, low-income neighborhoods

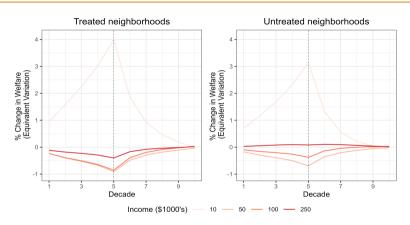


- Average neighborhood income: qualitatively similar pattern
 - **treated neighborhoods**: decrease during the policy, increases after the policy
 - untreated neighborhoods: increases during the policy, decreases after the policy
 - greater increase in the untreated, low-income neighborhoods

- A spatially-targeted teardown tax on low-income neighborhoods:
 - delay redevelopment in treated neighborhoods
 - shift redevelopment and gentrification to untreated neighborhoods
 - average income in the city decreases during the transition


The Policy Effects on Average Housing Rent Quality

• Avg housing quality and rent declines in the treated nghds and increase in untreated nghds.


◆ land value
◆ 20 year

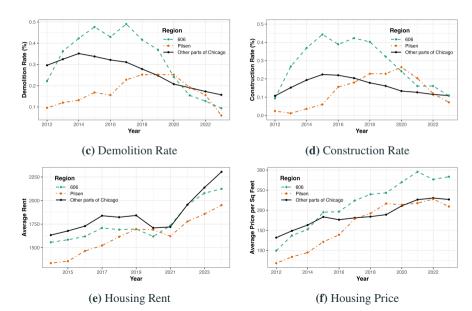
The Policy Effect on the Rent Function

- In addition to average rent, examine the changes in the rent function across neighborhoods
- Hump-shaped changes in rent along quality dist. in non-treated nghds:
 - lack of high-quality supply induces high-income to downgrade, generating a "trickle down" effect
 - more middle-income hhs move into untreated nghd, increasing middle-quality demand
 - these forces push up middle-quality rent

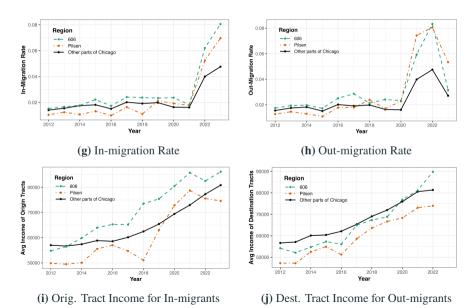
Welfare Effects across Households by Income and Initial Location

- Significant heterogeneous welfare effects across household income and initial location:
 - low-income hhs benefit the most, especially those initially in the treated nghds
 - **middle-income hhs** lose the most, due to increases in middle-quality rent
 - high-income hhs lose only slightly: small changes in high-quality rent and smaller exp. shares, 120

Conclusion


Conclusion

- We empirically and structurally assess a spatially-targeted teardown tax policy.
- While effective at reducing redevelopment locally, the policy has significant and heterogeneous welfare implications. more
 - benefits low-renters at the cost of middle- to high-income renters, especially the middle-income
 - decreases land value in treated areas and increases land value in untreated areas
- The model is useful for studying the long-run effects of housing policies that change quality distribution:
 - assignment within neighborhoods + quantitative spatial model + dynamics
 - e.g., low-income housing tax credit (LIHTC) and public housing demolition


Thank you very much!

Appendix

Redevelopment and Gentrification in the Policy Areas ·back

Redevelopment and Gentrification in the Policy Areas · back

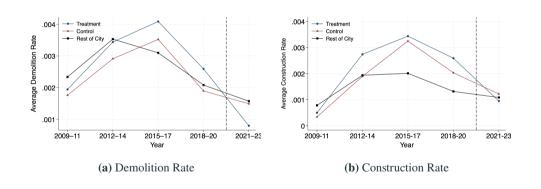
Balance Test (Buffer) · Back

	Treat	ed Area	Contr	ol Area	Differe	rence
Variable	Mean	SD	Mean	SD	Estimate	SE
Panel A: Assess	sment data	(2020)				
Bedrooms	4.57	(2.35)	4.38	(2.19)	0.20	(0.24)
Unit Sq. ft.	2423.36	(1433.72)	2337.09	(1369.41)	86.28	(207.49)
Land Sq. ft.	3201.29	(899.91)	3198.47	(1104.07)	2.81	(233.91)
Building Units	2.14	(1.20)	1.97	(1.16)	0.16	(0.23)
Build Year	1909.87	(39.14)	1916.59	(38.35)	-6.72	(8.35)
Panel B: Trans	action data	(2015–2020)				
Bedrooms	4.09	(2.17)	3.71	(2.09)	0.38	(0.25)
Unit Sq. ft.	2218.20	(1285.94)	2025.18	(1128.98)	193.01	(170.74)
Land Sq. ft.	3665.93	(2681.31)	3825.20	(2193.57)	-159.27	(289.06
Building Units	2.72	(2.83)	3.51	(3.77)	-0.79***	(0.10)
Build Year	1929.76	(52.28)	1940.91	(51.00)	-11.15	(11.33)
log(Sale Price)	12.81	(0.62)	12.85	(0.66)	-0.04	(0.03)
Panel C: Renta	l data (2015	5–2020)				
Bedrooms	2.24	(0.86)	2.18	(0.76)	0.06	(0.06)
Unit Sq. ft.	1130.35	(416.91)	1160.16	(385.79)	-29.81	(49.49)
Build Year	1898.49	(26.73)	1909.75	(32.40)	-11.26	(8.01)
log(Rent)	7.37	(0.33)	7.49	(0.33)	-0.12**	(0.06)

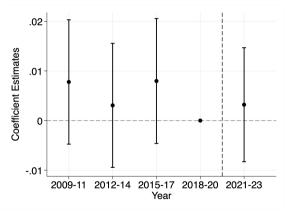
	Treat	Treated Area		of Chicago	Difference	
Variable	Mean	SD	Mean	SD	Estimate	SE
Panel A: As	ssessment data	(2020)				
Bedrooms	4.55	(2.33)	3.75	(1.89)	0.80***	(0.00)
Unit Sq. ft.	2393.72	(1413.87)	1875.43	(1235.09)	518.29***	(0.00)
Land Sq. ft.	3217.97	(896.78)	3991.24	(1830.01)	-773.27***	(0.00)
Building Un	its 2.12	(1.19)	1.46	(0.93)	0.65***	(0.00)
Build Year	1909.76	(38.57)	1932.63	(31.00)	-22.87***	(0.00)
Panel B: Tr	ansaction data	(2015–2020)				
Bedrooms	4.05	(1.95)	3.37	(1.30)	0.68***	(0.00)
Unit Sq. ft.	2103.75	(942.36)	1670.15	(780.42)	433.60***	(0.00)
Land Sq. ft.	3495.19	(1234.90)	5214.29	(2128.79)	-1719.10***	(0.00)
Building Un	its 2.60	(2.61)	1.75	(2.27)	0.84***	(0.00)
Build Year	1926.70	(51.02)	1948.95	(32.54)	-22.24***	(0.00)
log(Sale Pric	ce) 12.78	(0.62)	12.30	(0.81)	0.48***	(0.00)
Panel C: Re	ental data (2015	5-2020)				
Bedrooms	2.12	(0.94)	1.79	(1.06)	0.33***	(0.00)
Unit Sq. ft.	1115.04	(514.36)	1052.04	(517.10)	62.99***	(0.00)
Build Year	1899.03	(27.20)	1916.11	(33.29)	-17.08***	(0.00)
log(Rent)	7.41	(0.36)	7.47	(0.47)	-0.07***	(0.00)

Robustness on the Buffer Width: Permits (Back

		Demolition	n	Construction			
Buffer	0.25km	0.5km	1km	0.25km	0.5km	1km	
	(1)	(2)	(3)	(4)	(5)	(6)	
Treat ×							
2009-2011	-0.000	-0.002	-0.002	0.000	-0.002	-0.003*	
	(0.003)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	
2012-2014	0.002	0.001	-0.002	0.004	0.003	0.000	
	(0.004)	(0.003)	(0.002)	(0.003)	(0.002)	(0.002)	
2015-2017	0.005	0.001	0.001	0.003	-0.000	0.000	
	(0.004)	(0.003)	(0.002)	(0.004)	(0.003)	(0.002)	
2018–2020	-	-	-	-	-	-	
2021–2023	0.002 (0.003)	-0.004** (0.002)	-0.004** (0.002)	0.001 (0.003)	-0.003 (0.002)	-0.004** (0.002)	
Building FE	Yes	Yes	Yes	Yes	Yes	Yes	
Period × Neighborhood FE	Yes	Yes	Yes	Yes	Yes	Yes	
$F_{xt}(Lon, Lat)$	Yes	Yes	Yes	Yes	Yes	Yes	
Num. obs.	30,985	58,055	95,025	30,985	58,055	95,025	

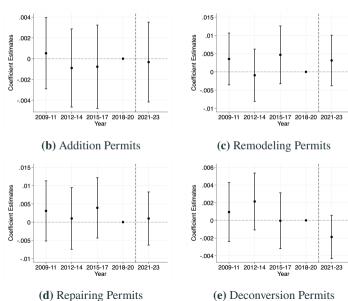

Robustness on the Buffer Width: Displacement • Back

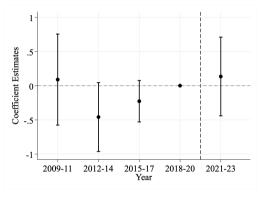
	Neig	hborhood-	level	Address-level			
Buffer Width	0.25km (1)	0.5km (2)	1km (3)	0.25km (4)	0.5km (5)	1km (6)	
Treat ×							
2018	0.005	-0.023	-0.020	-0.007	-0.024	-0.027	
	(0.028)	(0.022)	(0.018)	(0.030)	(0.025)	(0.020	
2019	0.039 (0.029)	-0.003 (0.023)	-0.006 (0.017)	0.034 (0.029)	-0.007 (0.024)	-0.009	
2020	-	-	-	-	-	-	
2021	0.053	0.028	0.007	0.055	0.030	0.008	
2022	0.044 (0.035)	-0.015 (0.029)	-0.002 (0.021)	0.055	-0.009 (0.031)	-0.00	
2023	0.011 (0.035)	-0.029 (0.026)	-0.039* (0.020)	0.021 (0.035)	-0.031 (0.029)	-0.041	
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	
Period × Neighborhood FE	Yes	Yes	Yes	Yes	Yes	Yes	
$F_{xt}(\text{Lon}, \text{Lat})$	Yes	Yes	Yes	Yes	Yes	Yes	
Num. obs.	4,194	7,775	13,809	4,194	7,775	13,80	


Robustness on the Buffer Width: Rental and Sales Prices (Back

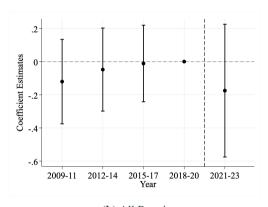
	Log Rent Log Sa					le	
Buffer	0.25km (1)	0.5km (2)	1km (3)	0.25km (4)	0.5km (5)	1km (6)	
Treat ×							
2018	0.016 (0.015)	0.009 (0.041)	0.037 (0.021)	0.015 (0.059)	0.024 (0.040)	0.072* (0.040)	
2019	-0.003 (0.015)	-0.004 (0.010)	-0.002 (0.009)	0.015 (0.059)	0.008	0.027 (0.035)	
2020	-	-	-	-	-	-	
2021	-0.013 (0.015)	-0.019 (0.010)	-0.007 (0.008)	-0.043 (0.043)	-0.011 (0.029)	0.003 (0.024)	
2022	-0.020 (0.015)	-0.011 (0.011)	-0.004 (0.010)	-0.008 (0.065)	-0.053 (0.040)	-0.048 (0.029)	
2023	-0.018 (0.016)	-0.018 (0.011)	-0.010 (0.010)	0.039 (0.073)	-0.004 (0.040)	-0.004 (0.031)	
Housing Characteristics	Yes	Yes	Yes	Yes	Yes	Yes	
Unit FE	Yes	Yes	Yes	No	No	No	
$Period \times Neighborhood \ FE$	Yes	Yes	Yes	Yes	Yes	Yes	
$F_{xt}(Lon, Lat)$	Yes	Yes	Yes	No	No	No	
Num. obs.	8,505	13,997	21,889	2,463	4,507	7,671	

Avg Demolition and Construction Rates • Return

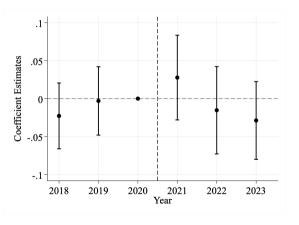




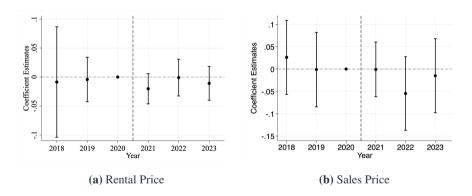
(a) All Renovation Permits


Renovation Permits by Type • Back

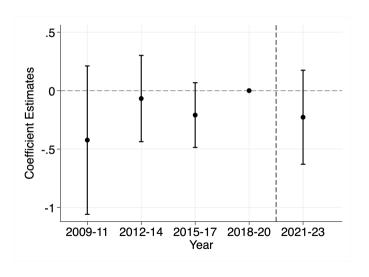
Processing Time · Back



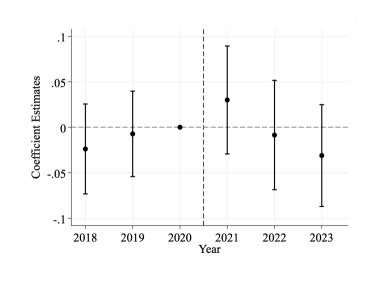
(a) Demolition Permits


(b) All Permits

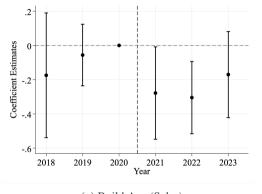
Finding II: Displacement • Bac

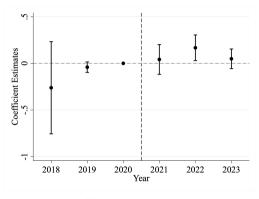

- Keep a panel of individuals who have stayed in the treater/control area for from 2014–2018
- Define displacement as leaving the 500-meter buffer area address
- Negative yet non-significant result on displacement

Finding III: Housing Rent and Price Back



- Negative yet insignificant effects on housing rent and sales prices.
 - The policy is too short to change the housing stock significantly.
- The parallel pre-trends and null policy effects also indicate that there was lack of anticipatory responses before the policy and no expectations of its extension.


Construction Cost & Back


Address-Level Displacement • Back

Composition of Transacted and Rental Properties · Back

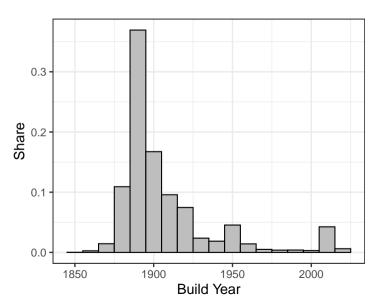
(a) Build Age (Sales)

(b) Build Age (Rent)

Quality Estimation (Back

Dependent var:	Log Rental Price		
Building age	-0.0020	-0.0019	-0.0021
Bedrooms	0.1477	0.1571	0.1572
Bedrooms ²	-0.0116	-0.0200	-0.0129
Bathrooms	0.1789	0.1715	0.1637
Bathrooms ²	-0.0201	-0.0201	-0.0199
Unit area (sq. ft.)	0.2825	0.2837	0.2880
Lot area (sq. ft.)	-0.0071	0.0061	-0.0120
Lot × unit area	0.0105	-0.0068	-0.0061
Rank of past sale price			0.0020
Rank of past sale price ²			-0.0000
Heating and Porch Type	Yes	Yes	Yes
Exterior Wall and construction quality	Yes	Yes	Yes
Number of Floors	Yes	Yes	Yes
Type of Structure	Yes	Yes	Yes
Neighborhood FE	Yes	Yes	Yes
Num Obs	17,212	11,333	11,333
R ²	0.87	0.87	0.87

The Effect of Redevelopment on Income Sorting · Back

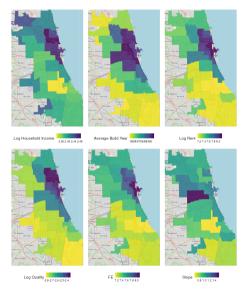

• To estimate the effect of housing redevelopment on income sorting, we run the following block-group-level regression:

$$\Delta \log \text{Median Income}_g = \beta_0 + \beta_1 \Delta \text{Median Building Age}_g + \beta_2 X_g + \varepsilon_g$$

where

- g represents a block group, Δ represents 2009-2019 changes
- X is a set of control variables
- We are interested in β_1 : $\beta_1 < 0$ means high-income hhs sort into nghds with newer housing
- \bullet Instrumental variable: Bartik-style IV \times the share of housing units built before 1910.
 - Intuition: among nghds that had positive labor demand shocks, those with a greater share of old houses will redevelop more
 - similar to the instrumental variable idea in Diamond (2016)

Distribution of Build Year of Redeveloped Buildings



Evidence on the Effect of Redevelopment on Income Sorting • Back

Table 1: Change in Building Age and Income

	(1)	(2)	(3)	(4)
	Δ log Income	Δ log Income	Δ log Income	Δ log Income
Δ Median Building Age	-0.068***	-0.086***	-0.107***	-0.105**
	(0.012)	(0.015)	(0.036)	(0.046)
Δ log Employment	-0.009	-0.052	-0.008	-0.053
	(0.037)	(0.036)	(0.038)	(0.036)
Initial Median Building Age	-0.001	-0.003***	-0.001	-0.003***
	(0.001)	(0.001)	(0.001)	(0.001)
Initial log Income		-0.269***		-0.276***
		(0.028)		(0.030)
Observations	2,268	2,268	2,268	2,268
R^2	0.038	0.143	0.025	0.140
Specification	OLS	OLS	IV	IV
KP F-Stat			29.7	38.2

Neighborhood-level Characteristics and Rent Function Estimates · Back

Estimating the Rent Function back

• Assume a uni-dimensional quality index as a function of housing characteristics:

$$q_{it} = -\delta \times Age_{it} + X_{it}\beta + \epsilon_{it}^{q}$$

- $-\delta$ is the depreciation rate, X_{it} is other observed housing char., ϵ_{it}^{q} is unobserved quality
- control for past sales price to account for unobserved quality (Diamond and Diamond, 2024)

• Assume a uni-dimensional quality index as a function of housing characteristics:

$$q_{it} = -\delta \times Age_{it} + X_{it}\beta + \epsilon_{it}^q$$

- $-\delta$ is the depreciation rate, X_{it} is other observed housing char., ϵ_{it}^q is unobserved quality
- control for past sales price to account for unobserved quality (Diamond and Diamond, 2024)
- Specify a log-linear empirical rent function using merged RentHub and assessment data:

$$\log P_{it} = \log \nu_{1x} + \nu_{2x} \left[-\delta \times Age_{it} + X_{it}\beta \right] + \nu_{2x} \log \epsilon_{it}^{q}$$
(11)

 $-v_{1x}$ and v_{2x} are neighborhood-specific intercepts and elasticities

Estimating the Rent Function back

• Assume a uni-dimensional quality index as a function of housing characteristics:

$$q_{it} = -\delta \times Age_{it} + X_{it}\beta + \epsilon_{it}^q$$

- $-\delta$ is the depreciation rate, X_{it} is other observed housing char., ϵ_{it}^q is unobserved quality
- control for past sales price to account for unobserved quality (Diamond and Diamond, 2024)
- Specify a log-linear empirical rent function using merged RentHub and assessment data:

$$\log P_{it} = \log \nu_{1x} + \nu_{2x} \left[-\delta \times Age_{it} + X_{it}\beta \right] + \nu_{2x} \log \epsilon_{it}^{q}$$
(11)

- $-v_{1x}$ and v_{2x} are neighborhood-specific intercepts and elasticities
- Estimate equation (11) using NLS: result
 - $-\delta = 0.21\%$ (0.35% by Rosenthal (2014)), recover q_{it} with $\hat{\delta}$ and $\hat{\beta}$

Redevelopment Elasticity $\sigma^{\,\,}$ back

• We set the housing supply elasticity σ to match the DiD estimate of the teardown tax:

$$\Delta \log \frac{p}{1-p} = \sigma \times \Delta [V^R - V^N]$$
Treatment effect on Demolition: -0.90 Teardown tax: \$15,000

- teardown tax was announced to be temporary ...
- so it does not capitalized into housing prices, as we show in the empirical results

Redevelopment Elasticity $\sigma^{\,\,}$ back

• We set the housing supply elasticity σ to match the DiD estimate of the teardown tax:

$$\Delta \log \frac{p}{1-p} = \sigma \times \Delta [V^R - V^N]$$
Treatment effect on Demolition: -0.90 Teardown tax: \$15,000

- teardown tax was announced to be temporary ...
- so it does not capitalized into housing prices, as we show in the empirical results
- Obtain $\hat{\sigma} = \frac{-0.90}{-15} = 0.06$ per thousand dollars

Unit Supply Elasticity γ back

• Landlord's housing supply decision conditional on redevelopment:

$$\max_{h} -\Omega_{x} \hat{q} h^{\gamma} - F_{\hat{q}x} + \frac{1}{\sigma_{c}} \xi_{it}^{R} + \beta \underbrace{\mathbb{E}_{\hat{q}_{t+1}} V_{i,t+1} \left(\hat{q}_{t}, h, \hat{q}_{t+1} \right)}_{\text{Exp. building value at completion}}$$

Unit Supply Elasticity γ back

• Landlord's housing supply decision conditional on redevelopment:

$$\max_{h} -\Omega_{x} \hat{q} h^{\gamma} - F_{\hat{q}x} + \frac{1}{\sigma_{c}} \xi_{it}^{R} + \beta \quad \underbrace{\mathbb{E}_{\hat{q}_{t+1}} V_{i,t+1} \left(\hat{q}_{t}, h, \hat{q}_{t+1} \right)}_{\text{Exp. building value at completion}}$$

• Obtain the estimating equation from the FOC

$$\log h_{it+1} = \Gamma + \frac{1}{(\gamma - 1)} \left(\log \frac{\partial \tilde{V}_{i,t+1} (q_{it+1}, h)}{\partial h} - \log q_{it+1} \right) - \frac{1}{(\gamma - 1)} \left(\log \Omega_{X} - \epsilon_{it+1}^{\gamma} \right)$$
(12)

- Proxy marginal expected value with observed value per housing unit
- Use employment RMA Bartik shock as instrument for unit values

Table 2: Estimation of the housing supply elastic	city
---	------

Log(Price Per Unit)

Num. obs.

First Stage F-stat

 R^2

Log(Adj. Price Per Unit)

Dependent	Variable:

OLS

(3)

-0.037*

(0.022)

3304

0.076

IV

(4)

0.091*

(0.052)

3304

0.007

9.5

Log(Housing Units)

IV

(2)

3304

-0.059

13.1

OLS

(1)

-0.114***

(0.018)

3304

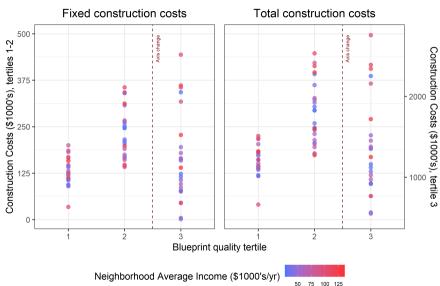

0.155

Table 2: Estimation of the housing supply elasticity

Dependent Variable:	Log(Housing Units)			
	OLS	IV	OLS	IV
	(1)	(2)	(3)	(4)
Log(Price Per Unit)	-0.114***	0.068*		
	(0.018)	(0.040)		
Log(Adj. Price Per Unit)			-0.037^{*}	0.091*
			(0.022)	(0.052)
Num. obs.	3304	3304	3304	3304
R^2	0.155	-0.059	0.076	0.007
First Stage F-stat		13.1		9.5

• similar to the unit supply elasticity 0.03 (0.03) estimated in Baum-Snow and Han (2024)

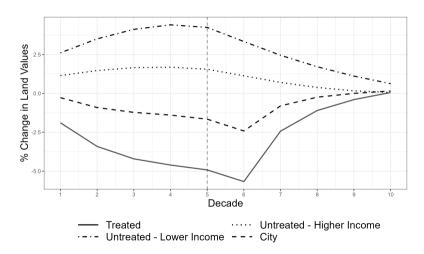
Estimated Construction Cost Parameters • Back

Calibration of Other Parameters back

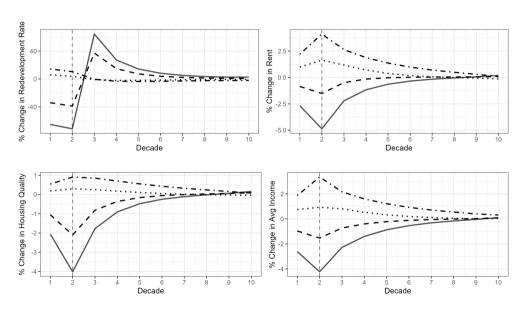
- Calibrate remaining parameters to target three sets of empirical moments in the steady state:
 - 1. nghd rent functions and quality distribution (from the hedonic regression)
 - 2. nghd population and income distributions (ACS data)
 - 3. Expenditure shares on rent by income decile (ACS microdata)

Calibration of Other Parameters back

- Calibrate remaining parameters to target three sets of empirical moments in the steady state:
 - 1. nghd rent functions and quality distribution (from the hedonic regression)
 - 2. nghd population and income distributions (ACS data)
 - 3. Expenditure shares on rent by income decile (ACS microdata)


• Demand-side parameters:

- Choose α and \bar{q} to target expenditure shares at estimated rent functions
- Exogenous amenities $\bar{A}(x,z)$ rationalize neighborhood population and income distributions
- Choose $\sigma_X = 8.5$ (Baum-Snow and Han, 2024), $\eta = 0.24$ (Macek, 2024), $\tau = 0.75$, $\beta = 0.97$


• Supply-side parameters:

- Choose fixed costs at each blueprint level $F_{\hat{q}x}$ to target estimated quality distribution H(q,x)
- Variable cost Ω_X to target average housing units per parcel Construction Costs
- Use redevelopment observed in the data to estimate unit supply elasticity γ

Land Value · back

Effects of a 20-year Teardown Tax Policy • back

Policy Implications • back

- **Source of inefficiency:** arises from endogenous amenities, i.e., households do not internalize how their location choices affect neighborhood quality.
 - over-sorting of low-income households into high-income neighborhoods

Policy Implications • back

- **Source of inefficiency:** arises from endogenous amenities, i.e., households do not internalize how their location choices affect neighborhood quality.
 - over-sorting of low-income households into high-income neighborhoods
- Welfare-improving policy: discourage low-income entry into high-income neighborhoods and compensate affected households.
 - with moving costs, must balance welfare gains from reallocation against moving costs.
 - politically infeasible: would raise segregation and have adverse social consequences.

Policy Implications • back

- **Source of inefficiency:** arises from endogenous amenities, i.e., households do not internalize how their location choices affect neighborhood quality.
 - over-sorting of low-income households into high-income neighborhoods
- Welfare-improving policy: discourage low-income entry into high-income neighborhoods and compensate affected households.
 - with moving costs, must balance welfare gains from reallocation against moving costs.
 - politically infeasible: would raise segregation and have adverse social consequences.
- Policy implications for housing:
 - encourage redevelopment in high-income rather than restrict it in low-income neighborhoods.
 - taxing redevelopment is undesirable: high-quality housing eventually filters down.
 - prefer redistribution without distorting supply (e.g., housing vouchers to displaced households).